On variants of the Johnson-Lindenstrauss lemma
نویسنده
چکیده
The Johnson–Lindenstrauss lemma asserts that an n-point set in any Euclidean space can be mapped to a Euclidean space of dimension k = O(ε−2 log n) so that all distances are preserved up to a multiplicative factor between 1 − ε and 1 + ε. Known proofs obtain such a mapping as a linear map Rn → Rk with a suitable random matrix. We give a simple and self-contained proof of a version of the Johnson–Lindenstrauss lemma that subsumes a basic versions by Indyk and Motwani and a version more suitable for efficient computations due to Achlioptas. (Another proof of this result, slightly different but in a similar spirit, was given independently by Indyk and Naor.) An even more general result was established by Klartag and Mendelson using considerably heavier machinery. Recently, Ailon and Chazelle showed, roughly speaking, that a good mapping can also be obtained by composing a suitable Fourier transform with a linear mapping that has a sparse random matrix M; a mapping of this form can be evaluated very fast. In their result, the nonzero entries of M are normally distributed. We show that the nonzero entries can be chosen as random ±1, which further speeds up the computation. We also discuss the case of embeddings into Rk with the "1 norm. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 33, 142–156, 2008
منابع مشابه
236779: Foundations of Algorithms for Massive Datasets Lecture 4 the Johnson-lindenstrauss Lemma
The Johnson-Lindenstrauss lemma and its proof This lecture aims to prove the Johnson–Lindenstrauss lemma. Since the lemma is proved easily with another interesting lemma, a part of this lecture is focused on the proof of this second lemma. At the end, the optimality of the Johnson–Lindenstrauss lemma is discussed. Lemma 1 (Johnson-Lindenstrauss). Given the initial space X ⊆ R n s.t. |X| = N , <...
متن کاملJohnson-lindenstrauss Transformation and Random Projection
We give a brief survey of Johnson-Lindenstrauss lemma. CONTENTS
متن کاملAn Elementary Proof of the Johnson-lindenstrauss Lemma
The Johnson-Lindenstrauss lemma shows that a set of n points in high dimensional Euclidean space can be mapped down into an O(log n== 2) dimensional Euclidean space such that the distance between any two points changes by only a factor of (1). In this note, we prove this lemma using elementary probabilistic techniques.
متن کاملThe Johnson-Lindenstrauss Lemma Meets Compressed Sensing
We show how two fundamental results in analysis related to n-widths and Compressed Sensing are intimately related to the Johnson-Lindenstrauss lemma. Our elementary approach is based on the same concentration inequalities for random inner products that have recently provided simple proofs of the Johnson-Lindenstrauss lemma. We show how these ideas lead to simple proofs of Kashin’s theorems on w...
متن کاملGeometric Optimization April 12 , 2007 Lecture 25 : Johnson Lindenstrauss Lemma
The topic of this lecture is dimensionality reduction. Many problems have been efficiently solved in low dimensions, but very often the solution to low-dimensional spaces are impractical for high dimensional spaces because either space or running time is exponential in dimension. In order to address the curse of dimensionality, one technique is to map a set of points in a high dimensional space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Random Struct. Algorithms
دوره 33 شماره
صفحات -
تاریخ انتشار 2008